To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Lesson Number:
5
Description:

In this lesson, the students will take their knowledge gained in the previous activities to innovate design solutions that will allow PV technology to plan an increased role in the transportation sector. The challenge given to them is to design a BEV that...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Description:

Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower. During this process, students will make references to specific phenomena...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Sources of Energy

Informative Writing: Where Does Energy Come From?

Grades:
3-8
Lesson Number:
1
Description:

This lesson is a (stand alone or in-unit) guided non-fiction research and writing project, which includes a differentiated choice menu and list of ideas for publishing the completed project. Each student will choose one of ten energy sources to research,...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how they have been used by humans.Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Thermal Convection

Where Does Energy Go?

Grades:
3-8
Lesson Number:
2
Description:

This lesson consists of six demonstration activities that show examples of ways in which water and air absorb heat to transfer energy from one place to another. These demonstration activities act as unique phenomena in which students can generate questions...

+
-
More Details Less Details
Learning Goal(s):
Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.
Author:
Lisa Morgan
Estimated Activity Length:
5 hours
WindMaterials_DSCN2143.jpg

Wind Power: A Hands on Experience

Grades:
3-8
Lesson Number:
3
Description:

This lesson challenges students to work in teams to design successful turbine blades for the “KidWind Firefly”. The firefly has an LED light that lights up when the students have designed turbine blades that spin effectively. This lesson provides students...

+
-
More Details Less Details
Learning Goal(s):
Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade at harnessing and converting the mechanical energy of the wind.
Author:
Lisa Morgan
Estimated Activity Length:
2 hours
Solar Updraft

Let's Build Our Wind and Solar Energy Toy

Grades:
3-8
Lesson Number:
4
Description:

Students will combine what they learned in previous lessons using their investigations of convection-related phenomena to design a device that will convert light energy from the sun into thermal energy and utilize the resulting convection currents. Their...

+
-
More Details Less Details
Learning Goal(s):
Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                                Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
3 hours
Solar Updraft Tower

Learning About Solar Updraft Towers

Grades:
3-8
Lesson Number:
5
Description:

This lesson helps students learn about solar updraft towers being planned and built around the world to help solve the energy crisis by using unlimited power from the sun. This will provide real world context to the engineering challenge they engaged in...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands, including careers.
NGSS Science and Engineering Practices:
Author:
Lisa Morgan
Other Subjects Covered:
Estimated Activity Length:
0 sec
Energy Transformations

Introduction to Energy

Grades:
7-8
Lesson Number:
1
Description:

This lesson will introduce students to each of the different types of energy using PowerPoint slides, partner activities, and hands-on experiences with different kinds of energy including: batteries (chemical), electrical circuits (electrical), motors (...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
• Students will be able to name and describe at least 5 kinds of energy • Students will be able to identify and explain simple energy transformations
Author:
Craig Marais
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Simple Circuit

Introduction to Circuits

Grades:
7-8
Lesson Number:
2
Description:

This lesson begins with students having hands-on experiences creating electrical circuits using a battery, wires, and a light bulb. Students will learn that electricity is the flow of electrons, and how electricity moves within a circuit.

+
-
More Details Less Details
Learning Goal(s):
By the end of these two lessons students should be able to: 1. Create a simple circuit on their own when given the appropriate materials. 2. Diagram the flow of electrons within a circuit. 3. Differentiate between series and parallel circuits.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Craig Marais
Relevant NGSS PE:
Estimated Activity Length:
0 sec
Kill-A-Watt_Meter

How much energy do YOU use?

Grades:
7-8
Lesson Number:
3
Description:

Students will learn the difference between energy and power. They will then use this new understanding to compare the energy and power difference of light bulbs (incandescent, halogen, fluorescent, and LED) using a tool called a “Kill-A-Watt” meter....

+
-
More Details Less Details
Learning Goal(s):
Students will be able to: • Explain the difference between power and energy • Proficiently use a “Kill-A-Watt” meter to determine the power and total energy usage of everyday devices • Compare the total energy used by common household devices • Brainstorm different ways we can conserve electrical energy
Author:
Craig Marais
Relevant NGSS PE:
Estimated Activity Length:
0 sec