Earth Sun

Individual Independent Projects

Grades:
3-5
Lesson Number:
12
Description:

The purpose of this lesson is to allow students to choose an area of interest regarding solar power and research it further in a manner of their choice. Students will produce a final product to display or share at the “Salute to the Sun” culminating event...

+
-
More Details Less Details
Learning Goal(s):
Students will plan, gather research materials and create a project of their choice. In doing so student will learn proper research methods (i.e., reliable sources) and how to categorize and translate information. In addition students will become comfortable and familiar presenting information to others. Lastly, students will also learn how to create a rubric for self evaluation.
Author:
Lisa Morgan
Relevant NGSS PE:
Estimated Activity Length:
10 hours

Cost Effective Solar Cells: Unique Solar Cell Construction & Testing

Grades:
9-12
Lesson Number:
12
Description:

This lesson is designed to be completed in four 80-minute sections. The teacher will facilitate the construction of unique solar cells for student projects. General chemistry equipment and fabrication equipment will be needed for student construction and...

+
-
More Details Less Details

Cost Effective Solar Cells: Construction Progress and Obstacles

Grades:
9-12
Lesson Number:
13
Description:

This lesson is designed to be completed in one 80-minute section. The teacher will facilitate 3-4 groups as they share their construction progress and obstacles. Students will share individual results in a fishbowl setting and will participate in...

+
-
More Details Less Details

Cost Effective Solar Cells: Unique Solar Cell Engineering Report

Grades:
9-12
Lesson Number:
14
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will have students write their engineering reports with the following sections: Introduction (taken from Lesson #10), Design (incorporating the model from Lesson #10),...

+
-
More Details Less Details
Learning Goal(s):
Students will format solar cell data into tables and graphsStudents will draw conclusions based on testing dataStudents will construct an engineering report in a research poster format
Author:
Tom Wolverton
Estimated Activity Length:
4 hours

Solar Cars Science Investigation

Grades:
4-6
Unit:
Lesson Number:
2
Description:

Students will design a science investigation to test solar car with a pulley or with a variety of gear sizes. In the previous lesson, they were introduced to the different types of systems that can be employed on their car. In this lesson they will use...

+
-
More Details Less Details
Learning Goal(s):
Students will design an investigation to test solar vehicles. They will determine which particular materials they will use in the testing of their chosen format. Students will allow for redesign to take place by determining variables that can be manipulated in a measurable format. Students will determine data that will be useful to collect in the testing of their vehicle design.
Author:
Carol Patrick
Relevant NGSS PE:
Estimated Activity Length:
50 min
Basic Stamp Microprocessor

Controlling a Servo

Grades:
9-12
Lesson Number:
2
Description:

In this lesson students will learn how to control a servo using the Basic Stamp. Then students will combine the photoresistor from the previous lesson with the servo to create a light controlled servo.

+
-
More Details Less Details
Learning Goal(s):
Students will be able to apply the pulse width modulation to a servo from a Basic Stamp. Students will synthesize two circuit designs using one to control the other through the Basic Stamp.
Author:
Pat Blount
Estimated Activity Length:
1 hour
Sphero SPRK+

Solar SPRK+: Sphero Edu Coding

Grades:
6-8
Unit:
Lesson Number:
2
Description:

After working on a few Scratch drag and drop programs, participants will transition to Sphero Edu, a comparable drag and drop program for Lesson 2 to prepare to program a Sphero SPRK+ ball to navigate through a maze.

+
-
More Details Less Details
Learning Goal(s):
Students will use block programming and Oval Language in order to make a SPRK+ perform a variety of motion-oriented tasks.Students will combine motion and sound functions using block programming and Oval Language.Students will track useful pieces of sequence code that they can reuse in order to get their SPRK+ to navigate a lengthy maze.
NGSS Science and Engineering Practices:
Author:
Deb Frankel
Other Subjects Covered:
Estimated Activity Length:
5 hours
Wave Attenuator

Building a Tidal Wave Attenuator

Grades:
6-12
Lesson Number:
2
Description:

This lesson is designed to build upon investigations of electromagnetic energy by applying these phenomena to transfer the kinetic energy moving in waves to electricity by building a wave attenuator.

+
-
More Details Less Details
Learning Goal(s):
1. Students will describe and model the energy transfer and transformation in a wave attenuator. 2. Students will build a wave attenuator using a diagram and selected materials. 3. Students will test the model wave attenuator they built.
Author:
Tabatha Roderick
Estimated Activity Length:
2 hours
Solar Car Student

Solar Car Challenge: Criteria, Constraints and Background

Grades:
6-8
Lesson Number:
2
Description:

Students will play around with the solar car kits to familiarize themselves with the materials in preparation for the solar car engineering challenge.

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
To introduce students to the problem that this project will attempt to solve: building a solar car that will go straight, far, and fast to win a race.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Karen Nelson
Other Subjects Covered:
Estimated Activity Length:
50 min
Compost Heater

Compost Bioreactor Design

Grades:
7-12
Lesson Number:
2
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the release of energy during the composting of organic waste. In this activity, we will experiment with the feasibility of harnessing thermal energy to heat water with...

+
-
More Details Less Details
Learning Goal(s):
1. Students will research the science of composting and proper maintenance methods to build their own bioreactor. 2. Students will research the proper composition of compost for maximum heat production. 3. Students will transfer the thermal energy in compost to a container of water heat water with by placing a vessel in the middle of the active compost/bioreactor.
Author:
Tami Church
Estimated Activity Length:
2 hours