Design a 50 Year Energy Plan

Scaling up to Power Production Let’s use Data to Optimize the Performance of a Solar Cell Array

Grades:
9-12
Lesson Number:
4
Description:

Somewhat similar to the first part of the wind turbine project from Lesson 3, students are tasked with optimizing the performance of a photovoltaic system. This objective both allows students to apply the engineering-design process they absorbed in...

+
-
More Details Less Details
Solar Car Race

Collect Data...Then Compare and Contrast

Grades:
4-6
Unit:
Lesson Number:
4
Description:

Students will race different iterations of solar cars: geared and pulley-system cars using varying gear ratios. Students will have the opportunity to make predictions, record data, and explain the results centered on the selection of these different...

+
-
More Details Less Details
Learning Goal(s):
Students will:Compare and contrast forces acting on the system by examining the results of the solar car races.Explain the mechanics of gear ratios and demonstrate the most useful ratio to use when constructing solar cars.Explain the benefits of employing a pulley-system in their car construction. Students will understand the importance of selecting measurable, specific variables to compare in their data collection process in order to make evidence-based claims.
Author:
Carol Patrick
Other Subjects Covered:
Estimated Activity Length:
1 hour
Sphero SPRK+

Solar SPRK+ Electricity Fundamentals and Photovoltaics

Grades:
6-8
Unit:
Lesson Number:
4
Description:

Students work through a number of solar circuit explorations that culminate in a challenge to charge the Sphero SPRK+ devices with solar panels. In this exploration, students will investigate the requirements of various loads, working toward the voltage...

+
-
More Details Less Details
Learning Goal(s):
Students will determine how to create various types of circuits in order to power loads with different electric needs.Students will identify the electric needs of a Sphero charger and build a circuit needed to charge this device.
Author:
Deb Frankel
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Updraft

Let's Build Our Wind and Solar Energy Toy

Grades:
3-8
Lesson Number:
4
Description:

Students will combine what they learned in previous lessons using their investigations of convection-related phenomena to design a device that will convert light energy from the sun into thermal energy and utilize the resulting convection currents. Their...

+
-
More Details Less Details
Learning Goal(s):
Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                                Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.
Pedagogy & Practice:
Author:
Lisa Morgan
Estimated Activity Length:
3 hours
Earth Sun

Saving Lives with Solar Ovens

Grades:
3-5
Lesson Number:
4
Description:

Students will be introduced to Solar Cookers International. Students will learn about different solar cooker designs and how they function. Students will learn the pros and cons on the use of solar ovens in developing countries. Students will gain an...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will learn about different solar cooker designs and how they function. Students will learn the customs, jobs, food and clothing of people in different countries of Africa.
NGSS Science and Engineering Practices:
Author:
Lisa Morgan
Estimated Activity Length:
50 min
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:

In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours

Design and Engineer Solutions

Grades:
5-8
Lesson Number:
4
Description:

This lesson is designed to span 9 days with 50-minute sessions. The students will use a Design and Engineering Journal to guide them in the design and engineering process. In small groups they will use the research from lesson 2 to formulate solutions to...

+
-
More Details Less Details

Keeping it Cool With Solar: Build Time

Grades:
K-2
Lesson Number:
4
Description:

This lesson is designed for one 30-minute session. Students build their structures based on their designs from Lesson 3. Students share evidence about ho w their structures affect the sunlight on the earth’s surface.

+
-
More Details Less Details

Cost Effective Solar Cells: Solar Panel Data Sharing

Grades:
9-12
Lesson Number:
4
Description:

This lesson is designed to be completed in one 40-minute section. The teacher will facilitate the sharing of student solar panel data from indoor and outdoor testing with fans, music circuits, LEDs and any other combinations that were constructed. Teachers...

+
-
More Details Less Details
Learning Goal(s):
Students will analyze and share out power generation results with classmates
Author:
Tom Wolverton
Estimated Activity Length:
0 sec

Part 2 - Lesson 1: Renewable Energy Panel

Grades:
6-12
Lesson Number:
4
Description:

Students will meet with local planners or other available energy experts to discuss public policy regarding the use of wind turbines and solar arrays to generate electricity. Students develop questions for a panel of professionals regarding considerations...

+
-
More Details Less Details
Learning Goal(s):
1.Students will gain background information regarding the limitations of having and wind and solar generating infrastructure within city and county limits, including environmental, aesthetic, and cultural considerations. 2.Students will compile criteria for placement of wind and solar energy sources.
Author:
Jonathan Strunin
Relevant NGSS PE:
Estimated Activity Length:
1 hour