Adrift in a Sea of Plastic Unit Plan

Grades:
5-8
Description:

In this unit students will investigate the phenomena of plastic trash islands floating in the Pacific and Atlantic Oceans. The students will work to solve the problem of plastic trash islands through the engineering and design process. Using 3D printers,...

+
-
More Details Less Details
Learning Goal(s):
·       Students will design 3D models using Tinkercad software.·       Students will define the problem of plastic trash islands.·       Students will describe possible solutions to the problem of plastic trash islands.·       Students will research the plastic trash problem and create google slideshows the problem and how we might fix it.·       Students will investigate different ways to build structures that both float and hold weight.·       Students will build a model of a device that could collect plastic from the ocean.·       Students will test the models they build.·       Students will communicate their results from scientific inquiry to identify factors that are important to optimizing the design of the plastic collecting device.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Source:
Metropolitan Center for Research on Equity and the Transformation of Schools (NYU Metro Center)
Published:
2021
Last Updated:
2021
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Description:

NYU Metro Center designed this tool to help parents, teachers, administrators, students, and community members determine the extent to which their schools’ Science, Technology, Engineering, Arts, and Mathematics (STEAM) curricula are (or are not) culturally responsive. This scorecard can be used to evaluate just one discipline of STEAM, like a math curriculum or a science curriculum, or an interdisciplinary curriculum that includes all aspects of STEAM. We hope that this collaborative evaluation process will provoke thinking about what students should learn, how they should learn it, why they should learn it, and how curriculum can be transformed to engage students effectively. 

Location:
Energy Content:
Source:
Institute for Science and Math Education
Published:
2016
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A fantastic one-page guide for educators to navigate different activities to promote collaborative science learning, based on the need/purpose andn timing of the activity. Includes stuent- and teacher led activities across a range of leanring styles. 

Location:
Source:
TERC
Published:
2012
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Resource File(s):
Description:

A simple reference for all student ages of talk moves and activities that educators can use to facilitate productive academic dialogue around new topics.

Location:
Source:
Allegheny Intermediate Unit
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5
Description:

These STEM Packs for grades PreK-5 use picture books to engage students in a series of 40 minute pre-designed STEM lessons with associated materials. Many kits are reusable or easily refurbishable with basic materials. The topics are derived explicitly from NGSS and are aligned with the standards across multiple Disciplinary Core Ideas. CE and AIU co-developed two energy-focused Storytime STEM Packs, including "Boy Who Harnessed the Wind" investigation and engineering design and "My Papi has a Motorcycle" energy use exploration.

Location:
Source:
Teach Engineering/University of Colorado
Published:
2014
Last Updated:
2020
Intended Grade Level:
3-5
Description:

A basic introduction to electrical energy and how it shows up in the world, including understanding the atomic basis for electricity. Not phenomena driven, but a solid stand-alone lesson to help students understand electricity.

Location:
Energy Content:
NGSS Disciplinary Core Idea:
Pedagogy & Practice:
Resource Type:
Source:
TERC
Published:
2012
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS
Description:

Teacher guide that focuses on introduing and strategies for fostering academically productive talk in classrooms, with a focus on STEM practices of Construction Explanations and Arguing from Evidence. Has many great tools for fostering a culture of evidence-based dialog in classroom environments.

Location:
Other Subjects Covered:
Source:
University of Washington
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS,
OST
Description:

This web site provides a vision of ambitious science instruction for elementary, middle school and high school classrooms. Ambitious teaching deliberately aims to support students of all backgrounds to deeply understand science ideas, participate in the activities of the discipline, and solve authentic problems.

AST features 4 core sets of teaching practices that support these goals. These core sets make up the Ambitious Science Teaching Framework. The framework has been based on classroom research from the past 30 years—research that has asked, “What kinds of talk, tasks, and tools do students need in order to fully engage in meaningful forms of science learning?”

If you are a member of a group of science educators committed to the improvement of teaching, the vision, practices, and tools here will furnish a common language for you about teaching. You will be able to identify “what we will get better at” and how to get started.

Location:

Pages