Source:
The Engineering Mindset
Published:
2021
Last Updated:
2021
Intended Grade Level:
MS,
HS,
Post Secondary
Description:

The Engineering Mindset is a series of illustrated comprehensive tutorials on electricity concepts, energy and engineering concepts, from topics as simple as electricity basics to complicated real-world technological applcations, especially building systems. They are a great go to resource for explaining complicated concepts in relatively simple, well-illustrated videos.

Location:
Other Subjects Covered:
Solar Circuit

Circuit Analysis With Solar Energy: Measure the Power Consumed by Various Devices

Grades:
6-12
Description:

Students will set up a simple circuit using a solar module and three small loads. They will then use a multimeter to measure the voltage across each load and the current through each circuit. Students will then calculate the power consumption and...

+
-
More Details Less Details
Learning Goal(s):
Students will understand that voltage is a measure of a difference in electric potential energy and that current is the rate at which charge flows through a circuit. Students will understand how to measure and quantify electricity. Students will become familiar with the relationships between the fundamental electrical quantities.
Author:
Emily Barrett
Estimated Activity Length:
1 hour
Source:
Murdock Charitable Trust
Published:
2020
Last Updated:
2020
Intended Grade Level:
HS,
Post Secondary
Description:

This unique program pairs high school science teachers with a mentor doing cutting-edge research in an academic lab or a lab associated with another nonprofit institution. The Murdock Trust awards approximately 25 Partners in Science grants each year to fund these teacher-mentor research opportunities in the Pacific Northwest. Our goal is to help teachers bring knowledge from the research lab directly into the classroom to promote hands-on science education. 

Other Subjects Covered:

Constructing a Solar-Powered MintyBoost USB Charger

Grades:
6-8
Description:

Students will receive a background on solar energy, solar energy applications, and electrical circuit components. Students will then apply these concepts to a Home Energy Consumption worksheet and the construction of a Solar Module MintyBoost USB Charger,...

+
-
More Details Less Details
Learning Goal(s):
Students will gain a background on solar energy and be able to apply terms such as solar modules, photovoltaics, and solar power. Students will gain a background on electrical circuit components and be able to apply terms such as capacitor, resistor, diode, alternating and direct current, amps, inductor, volts, and watts. Through the completion of the Home Energy Consumption worksheet, students will determine their family’s monthly energy consumption and calculate the monthly dollar cost for household items such as light bulbs, game consoles, and televisions. Students will demonstrate their understanding of solar energy and electrical circuits through the construction of a Solar Module MintyBoost USB Charger and a presentation of their own unique product that utilizes the solar charger.
Author:
Deb Frankel
Other Subjects Covered:
Estimated Activity Length:
10 hours
Arduino Angler Design

Illuminate Me: Merging Conductive Sewing, Technology, and Solar Power

Grades:
7-12
Description:

Light up your clothing using solar power! For this unit, students will attach thin, flexible solar modules to a bike helmet and recharge NiMH rechargeable batteries for a renewable energy battery pack. The rechargeable batteries will be used to light up...

+
-
More Details Less Details
Learning Goal(s):
1. Students will design and sew a wearable circuit using conductive thread. 2. Students will program a wearable microcontroller to light up garment with bright LEDs. 3. Students will incorporate solar power into a wearable garment project by recharging NiMH batteries for a renewable energy battery pack. 4. Students will apply knowledge of circuitry and energy transfer to maximize design.
Author:
Kristy Schneider
Estimated Activity Length:
10 hours
Source:
State of Idaho
Published:
2020
Last Updated:
2020
Intended Grade Level:
PreK-2,
3-5,
MS,
HS
Description:

STEM AC is Idaho's statewide resource for everything STEM, including a wealth of programs, grants, oportunities, partnerships and more for Idaho's STEM educators. The mission of STEM AC is: Engineering innovative opportunities for educators, students, communities, and industry to build a competitive Idaho workforce and economy through STEM and computer science education.

Solar Mini House

Mini Solar Houses Unit

Grades:
4-6
Description:

In Lesson 1, the lesson focuses on understanding how the angle and orientation affect the amount of energy that is generated through use of a solar cell. Paper azimuth finders, Keva Planks, and multimeters will be used in order for students to draw...

+
-
More Details Less Details
Learning Goal(s):
1. Students will understand how to use an Azimuth finder to determine the direction and altitude that solar modules will face. 2. Students will learn how to describe why a solar module is pitched at a particular angle. 3. Students will understand how to measure the voltage and current for an electrical energy source. 4. Students will learn how to build a circuit that will light a light bulb with a switch and without a switch. 5. Students will understand that the electricity flows through a circuit from an energy source to a load. 6. Students will understand the difference between open and closed circuits. 7. Students will understand the similarities and differences between solar cells and batteries as an energy source. 8. Students will understand how electricity flows through a circuit (from energy sources to loads) with more than one source and more than one load. 9. Students will understand how to build series and parallel circuit and the characteristics of each. 10. Students will learn to power both a light and a fan. 11. Students will learn how to find a fault in a circuit. 12. Students will understand that the electricity flows through a circuit from an energy source to a load. 13. Students will understand the difference between open and closed circuits. 14. Students will identify the causes and solutions to various complications that arise in the construction of circuits. 15. Students will use the design process to create a roof to hold an adequate number of solar modules to power an LED and a fan. 16. Students will understand how to make a geometric net (a 2D drawing that when folded creates a 3D shape) for designing a roof.
Author:
Beverly Satterwhite
Estimated Activity Length:
8 hours
Source:
KidWind
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS,
OST
Description:

Two really fantastic and engaging engineering challenges held both nationally and online for grades 4-12: Wind Engineering and Solar Structures. Educators and students are provided with scaffolded lessons for engaging in the fundmanetal content of the challenge, as well as guidance for how to prepare and structure the challenge. Challenges can be run at the class, school, district, or regional level and the in-person challenge includes regional and national competitions. Kidwind also provide professional development opportunities for educators.

Location:
Basic Stamp Microprocessor

Measuring Voltage Using a Microcontroller

Grades:
9-12
Lesson Number:
1
Description:

In this lesson students will be introduced to series circuits, resistors, a photoresistor and a microcontroller. There’s a lot here, but it boils down to making a voltage divider circuit and measuring the voltage at different points. A second circuit...

+
-
More Details Less Details
Learning Goal(s):
Students will apply Ohm’s Law. Students will use a multimeter to measure current, voltage, and resistance. Students will use a breadboard to set up a series circuit. Students will read circuit diagrams. Students will calculate times for an RC circuit to change state. Students will prove that resistors in series have an equivalent resistance equal to their individual sums. Students will program the Basic Stamp to measure voltage levels in a voltage divider and RC circuit.
Author:
Pat Blount
Estimated Activity Length:
2 hours
Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Lesson Number:
1
Description:

Through a series of goal-oriented activities and research, students will build physical models that demonstrate the interactions between magnetism and magnetic fields as well as interactions between magnetism and electric fields. Students will be...

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
Author:
Tabatha Roderick
Estimated Activity Length:
3 hours