Cost Effective Solar Cells: Unique Solar Cell Engineering Report

Grades:
9-12
Lesson Number:
14
Description:
This lesson is designed to be completed in three 80-minute sections. The teacher will have students write their engineering reports with the following sections: Introduction (taken from Lesson #10), Design (incorporating the model from Lesson #10), Methods,...
+
-
More Details Less Details
Learning Goal(s):
Students will format solar cell data into tables and graphsStudents will draw conclusions based on testing dataStudents will construct an engineering report in a research poster format
Author:
Tom Wolverton
Relevant NGSS PE:
Estimated Activity Length:
4 hours

Cost Effective Solar Cells: Construction Progress and Obstacles

Grades:
9-12
Lesson Number:
13
Description:
This lesson is designed to be completed in one 80-minute section. The teacher will facilitate 3-4 groups as they share their construction progress and obstacles. Students will share individual results in a fishbowl setting and will participate in providing...
+
-
More Details Less Details

Cost Effective Solar Cells Unit Plan

Grades:
9-12
Description:
Through a series of solar panel and solar cell construction activities, students will learn the basic principles of energy conversion from light energy to chemical & electrical energy. Students will assemble and test pre-constructed solar panels to gain a...
+
-
More Details Less Details
Learning Goal(s):
Students will discuss social, cultural, and economic implications of sustainable solar energy.Students will construct and test solar panel arrays to power LED lights, fan motors, and music playersStudents will review circuitry basics and solar cell layersStudents will analyze and share out power generation results with classmatesStudents will construct and test an oxidized copper sheet solar cellStudents will share and analyze oxidized copper sheet solar cell dataStudents will construct and test titanium dioxide coated “raspberry juice” solar cellsStudents will collect and analyze titanium dioxide coated “raspberry juice” solar cell data.Students will discuss results and draw conclusions about variables that may affect power generationStudents will visit a solar cell or silicon manufacturing facility and/or engage with guest speakers. Students will learn more detailed solar cell principles and manufacturing techniques involved in solar cell constructionStudents will research chemicals, materials and procedures for their own solar cell designsStudents will build and present models of their proposed solar cellsStudents will construct and test unique solar cellsStudents will present construction progress and project obstaclesStudents will format solar cell data, draw conclusions, and construct an engineering report as a research poster
Author:
Tom Wolverton
Estimated Activity Length:
10 hours
Design a 50 Year Energy Plan

Diving into the Physics of Motors and Generators

Grades:
9-12
Lesson Number:
2
Description:
Using energy analysis and some tinkering students hand wind speakers to play music from a phone. This acts as a phenomenon to engage students in the exploration of electromagnetism. At this point, they have created a motor, which utilizes electric current to...
+
-
More Details Less Details
Learning Goal(s):
1. Through hands-on exploration, create a working speaker for a cellphone. 2. Use the creation of a speaker to observe as a model for the process of generating electrical current in a simple generator/motor. 
Author:
Bradford Hill
Relevant NGSS PE:
Estimated Activity Length:
5 hours
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:
Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...
+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Sphero SPRK+

Solar SPRK+: Final Challenge and Presentation

Grades:
6-8
Unit:
Lesson Number:
6
Description:
In this lesson, students will navigate through a maze using their SPRK+ in order to reach the solar charging station. Students will redesign their chariot in order to meet the needs of this new maze in order to carry their solar panels to the charging station...
+
-
More Details Less Details
Learning Goal(s):
Students will combine SPRK+ programming with the construction of a compatible chariot in order to guide their SPRK+ “Mars rover” to carry solar panels to a charging station.Students will present a final project to the class that summarizes their knowledge about the scientific background knowledge tied to this project as well as their design and testing process.
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
8 hours
Sphero SPRK+

Solar SPRK+: Chariot Engineering Design

Grades:
6-8
Unit:
Lesson Number:
5
Description:
Students will work through the engineering design process to build a chariot for their SPRK+ that will carry their solar panels through a maze to a charging station. Students will draft prototypes, test their designs, and make changes to their design based on...
+
-
More Details Less Details
Learning Goal(s):
Students will identify possible design solutions to have a Sphero SPRK+ pull solar panels as a portable power source.Students will work in groups to determine the best possible designs and construct and test these designs with their team.Students will determine the strengths and weaknesses of each design and incorporate these findings into further construction phases.
Author:
Deb Frankel
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
2 hours
Sphero SPRK+

Solar SPRK: Mars Exploration Debate

Grades:
6-8
Unit:
Lesson Number:
3
Description:
Students will research and then debate about the value of Mars exploration through robotic and/or human missions using a debate structure.
Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will identify high quality scientific information through research that represents multiple sides of an argument.Students will communicate a pre-determined side of an argument verbally, using evidence to support their claims.
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Sphero SPRK+

Introduction to Drag and Drop Coding Using Scratch

Grades:
6-8
Unit:
Lesson Number:
1
Description:
Students go through a series of exercises and projects/challenges to gain familiarity with coding, specifically with drag-and-drop coding. Students will look at Scratch, a free introductory computer programming language, which focuses on creative computing...
Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will understand how to properly order basic blocks of code to program simple functions.Students will determine the steps needed to debug issues in block programming.Students will devise methods to achieve basic animation-focused block programming tasks.Students will combine music and animation to create music videos and simple games using block coding.
NGSS Science and Engineering Practices:
Author:
Deb Frankel
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
10 hours
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Unit:
Description:
This unit incorporates basic programming knowledge and solar energy into an engineering design challenge using Sphero SPRK+ robots. The theme for this challenge centers on the idea of Mars rovers, and the challenges faced in space exploration, specifically...
+
-
More Details Less Details
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
10 hours

Pages