Part 1 - Lesson 1: Why Use Renewable Energy?

Grades:
6-12
Lesson Number:
1
Description:

The purpose of this lesson is for students to obtain base knowledge of how renewable and non-renewable energy is generated and identify differences between renewable resources and fossil fuels. Students will research the potential long-term and short-term...

+
-
More Details Less Details
Learning Goal(s):
1.Students will define and explain the differences between renewable and non-renewable energy sources.2.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing wind and solar energy.  3.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing fossil fuels.4.Students will generate questions about the greenhouse gas effect, identify and isolate variables, and then conduct an experiment to answer a class generated question about the greenhouse gas effect.5.Through Socratic seminar, students will use the knowledge gained over the course of this lesson to discuss the potential long- and short-term benefits and drawbacks of using fossil fuels, solar energy, and wind energy.
Author:
Jonathan Strunin
Relevant NGSS PE:
Estimated Activity Length:
8 hours

How might we design a battery that reduces e-waste? Phenomenon and Exploration

Grades:
4-5
Lesson Number:
1
Description:

During this introduction lesson series students will explore the guiding phenomenon to understand e-waste and connect it to battery design. Students will utilize online resources to learn about problems from e-waste around the world and the environmental...

+
-
More Details Less Details
Learning Goal(s):
1.Students will learn about the phenomenon of e-waste through online resources to explore the history of electronics.2.Students will ask questions and define problems involving the environmental impact of electronics and human impact.3.Students will evaluate and obtain information about electronic waste from online resources such as news articles and videos.4.Students will learn (or review) knowledge of circuits to design a model and explain how a circuit works.
Author:
Jonathan Strunin
Estimated Activity Length:
2 hours

Cost Effective Solar Cells: Researching Chemicals and Materials for Solar Cell Construction

Grades:
9-12
Lesson Number:
10
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will facilitate student research on solar cell designs centering around the engineering problem: How can we make a cheaper, cleaner or more efficient solar cell? Teachers...

+
-
More Details Less Details
Learning Goal(s):
Students will research chemicals, materials and procedures for their own solar cell designsStudents will write an introduction to the problem, including criteria, constraints, and solar cell conceptsStudents will research and write a rough materials and procedure for the solar cellStudents will research and describe their solar cell designs.
Author:
Tom Wolverton
Estimated Activity Length:
4 hours

Cost Effective Solar Cells: Unique Solar Cell Model Sketch and Presentation

Grades:
9-12
Lesson Number:
11
Description:

This lesson is designed to be completed in two 80-minute sections. The teacher will facilitate brief class presentations on the unique solar cell models. Teachers will model and encourage students to provide warm and cool feedback to the presenters,...

+
-
More Details Less Details
Learning Goal(s):
Students will sketch 2D or 3D models of their proposed solar cellsStudents will present their unique solar cell design ideas and sketches of their solar cells
Author:
Tom Wolverton
Estimated Activity Length:
3 hours

Cost Effective Solar Cells: Unique Solar Cell Construction & Testing

Grades:
9-12
Lesson Number:
12
Description:

This lesson is designed to be completed in four 80-minute sections. The teacher will facilitate the construction of unique solar cells for student projects. General chemistry equipment and fabrication equipment will be needed for student construction and...

+
-
More Details Less Details

Cost Effective Solar Cells: Construction Progress and Obstacles

Grades:
9-12
Lesson Number:
13
Description:

This lesson is designed to be completed in one 80-minute section. The teacher will facilitate 3-4 groups as they share their construction progress and obstacles. Students will share individual results in a fishbowl setting and will participate in...

+
-
More Details Less Details

Cost Effective Solar Cells: Unique Solar Cell Engineering Report

Grades:
9-12
Lesson Number:
14
Description:

This lesson is designed to be completed in three 80-minute sections. The teacher will have students write their engineering reports with the following sections: Introduction (taken from Lesson #10), Design (incorporating the model from Lesson #10),...

+
-
More Details Less Details
Learning Goal(s):
Students will format solar cell data into tables and graphsStudents will draw conclusions based on testing dataStudents will construct an engineering report in a research poster format
Author:
Tom Wolverton
Estimated Activity Length:
4 hours
Solar Car Student

Solar Car Challenge: Criteria, Constraints and Background

Grades:
6-8
Lesson Number:
2
Description:

Students will play around with the solar car kits to familiarize themselves with the materials in preparation for the solar car engineering challenge.

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
To introduce students to the problem that this project will attempt to solve: building a solar car that will go straight, far, and fast to win a race.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Karen Nelson
Other Subjects Covered:
Estimated Activity Length:
50 min
Solar Circuit

How Light Intensity Affects Solar Cell Output

Grades:
6-8
Unit:
Lesson Number:
2
Description:

Students will expose solar cells to a light source from different distances and measure the output with a multimeter. They will compare and contrast the outputs that the different distances produce.

+
-
More Details Less Details
Learning Goal(s):
After the completion of this lab, students will be able to describe how the light intensity affects solar cell output, have practiced using a multimeter, and have analyzed collected data.
Author:
Todd Freiboth
Estimated Activity Length:
40 min
Solar Rooftop

Macro-Scale Solar

Grades:
9-12
Lesson Number:
2
Description:

This lesson begins with basic chemistry with regards to atomic structure. The lesson then moves to understanding the special properties of silicon as a photoelectric semi- conductor. Building on this, the basic structure of photovoltaic solar cells is...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to describe the basic structure of a photovoltaic solar module implementing the ideas of series and parallel wiring. Students will be able to describe the basic structure of a photovoltaic solar array implementing the ideas of series and parallel wiring. Students will be able to describe the function and necessity of an inverter when using photovoltaic arrays.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
3 hours