Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours

Cost Effective Solar Cells Unit Plan

Grades:
9-12
Description:

Through a series of solar panel and solar cell construction activities, students will learn the basic principles of energy conversion from light energy to chemical & electrical energy. Students will assemble and test pre-constructed solar panels to...

+
-
More Details Less Details
Learning Goal(s):
Students will discuss social, cultural, and economic implications of sustainable solar energy.Students will construct and test solar panel arrays to power LED lights, fan motors, and music playersStudents will review circuitry basics and solar cell layersStudents will analyze and share out power generation results with classmatesStudents will construct and test an oxidized copper sheet solar cellStudents will share and analyze oxidized copper sheet solar cell dataStudents will construct and test titanium dioxide coated “raspberry juice” solar cellsStudents will collect and analyze titanium dioxide coated “raspberry juice” solar cell data.Students will discuss results and draw conclusions about variables that may affect power generationStudents will visit a solar cell or silicon manufacturing facility and/or engage with guest speakers. Students will learn more detailed solar cell principles and manufacturing techniques involved in solar cell constructionStudents will research chemicals, materials and procedures for their own solar cell designsStudents will build and present models of their proposed solar cellsStudents will construct and test unique solar cellsStudents will present construction progress and project obstaclesStudents will format solar cell data, draw conclusions, and construct an engineering report as a research poster
Author:
Tom Wolverton
Estimated Activity Length:
10 hours
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:

This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull...

+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec

Unit Plan: A Community Powered by Renewable Energy

Grades:
6-12
Description:

In this three-part comprehensive place-based and project-based unit, students will learn and apply rebnewable energy content to devise action plans at an individual, family, and local level. Students will use primary and secondary research explore energy...

+
-
More Details Less Details
Learning Goal(s):
LEARNING GOALS – PART 11.Students will define and explain the differences between renewable and non-renewable energy sources.2.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing wind and solar energy. 3.Students will research, summarize, and present the (short- and long-term) benefits and drawbacks of utilizing fossil fuels.4.Students will generate questions about the greenhouse gas effect, identify and isolate variables, and then conduct an experiment to answer a class generated question about the greenhouse gas effect.5.Through Socratic seminar, students will use the knowledge gained over the course of this lesson to discuss the potential long- and short-term benefits and drawbacks of using fossil fuels, solar energy, and wind energy.6.Students will define scientific vocabulary related to electricity.7.Students will be able to describe how electricity moves through a conductor.8.Students will draw and describe series and parallel circuits.9.Students will identify ways that energy is consumed within their homes.10.Students will perform an energy audit of their home and calculate the amount of energy used by each electronic device and appliances.11.Students will create a spreadsheet demonstrating the electricity required to operate each electronic device and appliance, along with a summary of finding that clearly identifies how energy consumption can be reduced within their home.12.Students will explore various ways to reduce energy (goal is 30% reduction).13.Students will propose a variety of energy reduction plans and present those options to their families for discussion.14.After discussion with their families, students will itemize the agreed upon plan and identify specific actions that result in quantifiable outcomes that will implemented to reduce energy consumption by their families.LEARNING GOALS – PART 21.Students will gain background information regarding the limitations of having and wind and solar generating infrastructure within city and county limits, including environmental, aesthetic, and cultural considerations. 2.Students will work with professionals to compile criteria for placement of wind and solar energy sources.3.Students will conduct experiments to collect and analyze data to provide a conclusion to the questions: What is the optimal blade angle for generating the most energy? What is the optimal wind speed for generating the most energy?4.Students will use prevailing wind data in your region to examine energy output of various sized small wind turbines as wind speeds incrementally increase.5.Based on local wind speeds, students will determine a range of potential kilowatt generation from wind power.6.Students will conduct experiments to determine how electrical output of solar panels change as the tilt, azimuth, and shade coverage change.7.Students will generate, compare, and evaluate various solar configurations for a solar project in your region.LEARNING GOALS – PART 31.Students will utilize previously acquired information about energy needs to create a renewable energy proposal for your town or city.2.Students will perform a solar audit on their homes and use class averages to project the amount of solar energy that can be generated on residential properties.3.Students will assess where commercial and municipal solar projects can occur within your town or city to meet the energy needs for non-residential consumers.4.Students will determine potential locations for larger-scale wind and solar farms to augment the remaining energy needs of the community.5.Students will prepare a comprehensive renewable energy plan that totals the calculations for potential residential, commercial, and agency renewable energy generation.6.Students will calculate the average amount of energy generated by wind turbines and solar panels in various conditions to determine the quantity of renewable energy sources required to power the city.7.Students will use their projected energy calculations to propose a combination of wind and solar sources to meet your locality’s energy needs, based on benefits and drawbacks of each source of energy.8.Based on prevailing winds and building orientation, students will explore potential sites for wind turbines and solar panels.9.Students will develop a final proposal to meet future energy needs through a combination of energy generation and reduction of energy consumption, prepare a brief slide presentation that summarizes their comprehensive plans, and present their finding to local energy conservation groups and local government staff or elected officials.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Unit:
Description:

This unit incorporates basic programming knowledge and solar energy into an engineering design challenge using Sphero SPRK+ robots. The theme for this challenge centers on the idea of Mars rovers, and the challenges faced in space exploration, specifically...

+
-
More Details Less Details
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
Author:
Deb Frankel
Estimated Activity Length:
10 hours

Unit Plan: Understand E-Waste Through Battery Design

Grades:
4-5
Description:

In this lesson students will further explore their understanding of energy, electricity, and basic circuits. Students will begin their exploration of batteries by questioning where batteries end up when we are done using them, making connections to e-waste...

+
-
More Details Less Details
Learning Goal(s):
1.Students will make connections to real world problem solving with e-waste.2.Students will explore battery design and transfer of energy through hands on experiments with household items.3.Students will evaluate and analyze problems with e-waste and research solutions.4.Students will draw and label models to explain circuits demonstrating the movement of energy.5.Students will be able to explain how the measured and compared batteries based on the knowledge learned about volts and using a voltmeter.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Description:

Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower. During this process, students will make references to specific phenomena...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Electric Current Induction

Wave Attenuator Unit Overview

Grades:
6-12
Description:

Through a series of learning experiences, students will experiment with the basic concepts of motion to electrical energy transformation. Students start by building a series of models that demonstrate the interactions between magnetic and electric fields....

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction. 5. Students will describe and model the energy transfer and transformation in a wave attenuator. 6. Students will build a wave attenuator using a diagram and selected materials. 7. Students will test the model wave attenuator they built. 8. Students will investigate variables that may affect the output of an energy conversion device (wave attenuator). 9. Students will interpret data to identify which variables increase electrical output for these model wave attenuators. 10. Students will communicate results from scientific inquiry to identify factors that are important to optimizing the design of a wave attenuator.
Author:
Tabatha Roderick
Estimated Activity Length:
10 hours

Pages