Keeping it Cool With Solar Unit Plan

Grades:
K-2
Description:

Keeping It Cool With Solar unit asks the question: “How might we design a structure that will keep us cool on a hot day?” As an anchoring phenomenon, students will be shown a time-lapse video of an ice cube melting, and a second phenomenon of a solar...

+
-
More Details Less Details
Learning Goal(s):
Students will make observations to determine the effect of sunlight on Earth’s surface. Students will plan and conduct investigations to determine whether structures made with various materials will keep objects cool when placed in a beam of light. Students will analyze data from tests of two objects designed to solve the same problem in order to compare the strengths and weaknesses of how each performs. Students will analyze data obtained from testing different materials to determine which materials have the properties that are best suited for keeping an object cool. Students will test if solar panels and solar energy can help cool down their structure.
Author:
Mark Lewin
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
4 hours
Solar Mini House

Mini Solar Houses Unit

Grades:
4-6
Description:

In Lesson 1, the lesson focuses on understanding how the angle and orientation affect the amount of energy that is generated through use of a solar cell. Paper azimuth finders, Keva Planks, and multimeters will be used in order for students to draw...

+
-
More Details Less Details
Learning Goal(s):
1. Students will understand how to use an Azimuth finder to determine the direction and altitude that solar modules will face. 2. Students will learn how to describe why a solar module is pitched at a particular angle. 3. Students will understand how to measure the voltage and current for an electrical energy source. 4. Students will learn how to build a circuit that will light a light bulb with a switch and without a switch. 5. Students will understand that the electricity flows through a circuit from an energy source to a load. 6. Students will understand the difference between open and closed circuits. 7. Students will understand the similarities and differences between solar cells and batteries as an energy source. 8. Students will understand how electricity flows through a circuit (from energy sources to loads) with more than one source and more than one load. 9. Students will understand how to build series and parallel circuit and the characteristics of each. 10. Students will learn to power both a light and a fan. 11. Students will learn how to find a fault in a circuit. 12. Students will understand that the electricity flows through a circuit from an energy source to a load. 13. Students will understand the difference between open and closed circuits. 14. Students will identify the causes and solutions to various complications that arise in the construction of circuits. 15. Students will use the design process to create a roof to hold an adequate number of solar modules to power an LED and a fan. 16. Students will understand how to make a geometric net (a 2D drawing that when folded creates a 3D shape) for designing a roof.
Author:
Beverly Satterwhite
Estimated Activity Length:
8 hours
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours

Cost Effective Solar Cells Unit Plan

Grades:
9-12
Description:

Through a series of solar panel and solar cell construction activities, students will learn the basic principles of energy conversion from light energy to chemical & electrical energy. Students will assemble and test pre-constructed solar panels to...

+
-
More Details Less Details
Learning Goal(s):
Students will discuss social, cultural, and economic implications of sustainable solar energy.Students will construct and test solar panel arrays to power LED lights, fan motors, and music playersStudents will review circuitry basics and solar cell layersStudents will analyze and share out power generation results with classmatesStudents will construct and test an oxidized copper sheet solar cellStudents will share and analyze oxidized copper sheet solar cell dataStudents will construct and test titanium dioxide coated “raspberry juice” solar cellsStudents will collect and analyze titanium dioxide coated “raspberry juice” solar cell data.Students will discuss results and draw conclusions about variables that may affect power generationStudents will visit a solar cell or silicon manufacturing facility and/or engage with guest speakers. Students will learn more detailed solar cell principles and manufacturing techniques involved in solar cell constructionStudents will research chemicals, materials and procedures for their own solar cell designsStudents will build and present models of their proposed solar cellsStudents will construct and test unique solar cellsStudents will present construction progress and project obstaclesStudents will format solar cell data, draw conclusions, and construct an engineering report as a research poster
Author:
Tom Wolverton
Estimated Activity Length:
10 hours
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:

This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull...

+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Solar Circuit

How the Amount of Light Affects a Solar Cell

Grades:
6-8
Unit:
Lesson Number:
1
Description:

Students will cover portions of a solar cell and measure the output with a multimeter. They will compare and contrast the outputs of different percentages shaded and different configurations using the same percentage shaded.

+
-
More Details Less Details
Energy Transformations

Introduction to Energy

Grades:
7-8
Lesson Number:
1
Description:

This lesson will introduce students to each of the different types of energy using PowerPoint slides, partner activities, and hands-on experiences with different kinds of energy including: batteries (chemical), electrical circuits (electrical), motors (...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
• Students will be able to name and describe at least 5 kinds of energy • Students will be able to identify and explain simple energy transformations
Author:
Craig Marais
Relevant NGSS PE:
Estimated Activity Length:
2 hours
Electric Current Induction

Introduction to Electromagnetism

Grades:
6-12
Lesson Number:
1
Description:

Through a series of goal-oriented activities and research, students will build physical models that demonstrate the interactions between magnetism and magnetic fields as well as interactions between magnetism and electric fields. Students will be...

+
-
More Details Less Details
Learning Goal(s):
1. Students will demonstrate energy transfer through space using electromagnetic phenomena. 2. Students will design a model that demonstrates that a current-carrying wire can induce magnetism. 3. Students will define and build an electromagnet. 4. Students will demonstrate electromagnetic induction.
Author:
Tabatha Roderick
Estimated Activity Length:
3 hours
Car Charger Schematic

Electrical Energy and Solar Module Efficiency

Grades:
7-12
Unit:
Lesson Number:
1
Description:

This lesson will let students do research to define terms that will be used in this unit. They will record this information in their Journals, which can be scientific or simple homemade notebooks. This lesson will also introduce the multimeter, small solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will document necessary terms in their journals 2. Students will be able to set up a multimeter to measure voltage 3. Students will be able to set up a multimeter to measure current 4. Students will be able to calculate power from data collected 5. Students should be able to measure the collector area of a solar module (area of solar cell(s) within solar module) and represent this value in square meters (m^2)
Author:
Brett McFarland
Estimated Activity Length:
4 hours