Solar Mobile

Light Source Efficiency: Exploring Irradiance

Grades:
6-8
Lesson Number:
4
Description:
This lesson explores the concept of irradiance by having students use a Vernier Pryanometer. Using the “Light Source Efficiency” worksheet to guide their work, students measure irradiance as compared to the Sun’s irradiance to see what would be the best li...
+
-
More Details Less Details
Learning Goal(s):
Using a Vernier Pyranometer, students will measure electromagnetic radiation in watts per square meter (W/m2 ). Students will compare Sunlight irradiance with various indoor lighting options. Students will make a recommendation as to the optimum indoor lighting for powering solar panels. 
Author:
Kristy Schneider
Estimated Activity Length:
2 hours
Solar Mobile

Exploring Circuits and Optimum Power

Grades:
6-8
Lesson Number:
2
Description:
This lesson is an exploratory learning cycle that will give the instructor input as to where students are in their understanding of circuits and also scaffolds student learning. This lesson starts by engaging students by using an Energy Stick. Then, students...
+
-
More Details Less Details
Learning Goal(s):
Students build series circuits using “grain of wheat bulb” and LEDs powered by various low voltage solar panels. Students build parallel circuits using grain of wheat and LED bulbs powered by various low voltage solar panels. Students demonstrate and draw the energy transfer using solar energy. Students draw a circuit diagram of their final optimal circuit. Students design an optimal circuit model that will be used in their final project. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
3 hours
Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:
This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull together their...
+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
0 sec
Design a 50 Year Energy Plan

What is Our Plan?

Grades:
9-12
Lesson Number:
6
Description:
With all the pieces in place, this Unit’s final lesson asks students to code a spreadsheet that calculates and mathematically predicts the environmental impacts of different energy sources and strategies over a 50 year timespan. Divided into five different...
+
-
More Details Less Details
Learning Goal(s):
1. Students utilize their knowledge of energy’s impact on global systems as well as the process of energy generation in order to inform their development of a 50-year Energy Plan divided into decades. 
Author:
Bradford Hill
Estimated Activity Length:
5 hours
Design a 50 Year Energy Plan

Scaling up to Power Production Let’s use Data to Optimize the Performance of a Solar Cell Array

Grades:
9-12
Lesson Number:
4
Description:
Somewhat similar to the first part of the wind turbine project from Lesson 3, students are tasked with optimizing the performance of a photovoltaic system. This objective both allows students to apply the engineering-design process they absorbed in previous...
+
-
More Details Less Details
Design a 50 Year Energy Plan

Scaling up to Power Production: Let’s Engineer a Wind Turbine

Grades:
9-12
Lesson Number:
3
Description:
After working through Lessons 1 and 2 of this Unit, students are now familiar with the physics of how generators work. The next step in Lesson 3 is to investigate how existing power generation systems operate and supply electricity to entire geographic...
+
-
More Details Less Details
Learning Goal(s):
1. Design, build, and refine a wind turbine in order to effectively and efficiently convert motion into mechanical energy and then into electrical energy 
Author:
Bradford Hill
Relevant NGSS PE:
Estimated Activity Length:
5 hours
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:
Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...
+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Hot Pack

Engineering a Hot Pack

Grades:
7-8
Lesson Number:
5
Description:
Through a series of inquiry activities, students will discover the properties of the chemical reaction of dissolving CaCl 2 in water, the effect of stirring, and of adding baking soda and sodium polyacrylate crystals. Once initial data is collected, students...
+
-
More Details Less Details
Learning Goal(s):
Students will collect data to characterize a chemical reaction Students will identify the criteria and constraints of an engineering challenge. Students will design and build a hot pack that meets the criteria of the project. Students will collect data to support their proposed design. 
Author:
Melody Childers
Relevant NGSS PE:
Estimated Activity Length:
5 hours
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:
Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and evaluate...
+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Sphero SPRK+

Solar SPRK+: Final Challenge and Presentation

Grades:
6-8
Unit:
Lesson Number:
6
Description:
In this lesson, students will navigate through a maze using their SPRK+ in order to reach the solar charging station. Students will redesign their chariot in order to meet the needs of this new maze in order to carry their solar panels to the charging station...
+
-
More Details Less Details
Learning Goal(s):
Students will combine SPRK+ programming with the construction of a compatible chariot in order to guide their SPRK+ “Mars rover” to carry solar panels to a charging station.Students will present a final project to the class that summarizes their knowledge about the scientific background knowledge tied to this project as well as their design and testing process.
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
8 hours

Pages