Keeping it Cool With Solar Unit Plan

Grades:
K-2
Description:

Keeping It Cool With Solar unit asks the question: “How might we design a structure that will keep us cool on a hot day?” As an anchoring phenomenon, students will be shown a time-lapse video of an ice cube melting, and a second phenomenon of a solar...

+
-
More Details Less Details
Learning Goal(s):
Students will make observations to determine the effect of sunlight on Earth’s surface. Students will plan and conduct investigations to determine whether structures made with various materials will keep objects cool when placed in a beam of light. Students will analyze data from tests of two objects designed to solve the same problem in order to compare the strengths and weaknesses of how each performs. Students will analyze data obtained from testing different materials to determine which materials have the properties that are best suited for keeping an object cool. Students will test if solar panels and solar energy can help cool down their structure.
Author:
Mark Lewin
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
4 hours
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Kill-a-Watt Meter

Home Energy Consumption

Grades:
6-8
Description:

Students will calculate the energy consumption of a set of common household devices based on their operating power rating and then investigate the power consumption of other devices in their homes.

+
-
More Details Less Details
Learning Goal(s):
Students will understand power and energy as they relate to their electricity use. Students will be able to calculate energy consumption and the associated costs. Students will investigate ways they could reduce their own energy consumption
Author:
Deb Frankel
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Constructing Solar Panels

Solar Panel Construction, Orientation and Use Unit

Grades:
9-12
Description:

For this extended task, students will track the sun's altitude and Azimuth to determine the best position for their hand-built solar panel, learn solar cell operation basics, solar panel construction, series and parallel circuitry and basic array sizing...

+
-
More Details Less Details
SODIS_UV Treament

Solar and SODIS: Creating Clean Water for the World

Grades:
5-8
Description:

According to Nobel Laureate Richard Smalley, the number one and two challenges for humanity are energy and clean water. This classroom activity will introduce students to a low cost, renewable technique that connects these two issues. During the activity,...

+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to the range of microbes in the environment, understand the risks of “dirty water” and be able to explain how energy from the sun can purify water through the SODIS technique.
Author:
Jamie Repasky
Estimated Activity Length:
1 hour
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Sources of Energy

Energy Review: Practical and Technical Perspectives—What is Energy?

Grades:
4-8
Description:

Students will take a short field trip around the school to identify different types of energy.

+
-
More Details Less Details
Learning Goal(s):
To access prior knowledge about different forms of energy
NGSS Science and Engineering Practices:
Author:
Erin Sturtz
Estimated Activity Length:
50 min

Constructing a Solar-Powered MintyBoost USB Charger

Grades:
6-8
Description:

Students will receive a background on solar energy, solar energy applications, and electrical circuit components. Students will then apply these concepts to a Home Energy Consumption worksheet and the construction of a Solar Module MintyBoost USB Charger,...

+
-
More Details Less Details
Learning Goal(s):
Students will gain a background on solar energy and be able to apply terms such as solar modules, photovoltaics, and solar power. Students will gain a background on electrical circuit components and be able to apply terms such as capacitor, resistor, diode, alternating and direct current, amps, inductor, volts, and watts. Through the completion of the Home Energy Consumption worksheet, students will determine their family’s monthly energy consumption and calculate the monthly dollar cost for household items such as light bulbs, game consoles, and televisions. Students will demonstrate their understanding of solar energy and electrical circuits through the construction of a Solar Module MintyBoost USB Charger and a presentation of their own unique product that utilizes the solar charger.
Author:
Deb Frankel
Other Subjects Covered:
Estimated Activity Length:
10 hours
Sphero SPRK+

Solar SPRK+ Unit Overview

Grades:
6-8
Unit:
Description:

This unit incorporates basic programming knowledge and solar energy into an engineering design challenge using Sphero SPRK+ robots. The theme for this challenge centers on the idea of Mars rovers, and the challenges faced in space exploration, specifically...

+
-
More Details Less Details
Learning Goal(s):
Students will develop tools to use in the Engineering Design Process.Students will learn drag and drop programming with Sphero Edu (formerly Lightning Lab).Students will determine how series and parallel circuits affect voltage and current.Students will understand how to use photovoltaic sources to charge a SPRK+.Students will design a chariot to carry a photovoltaic power source for a SPRK+.Students will learn to program a SPRK+ ball and chariot through a maze.
Author:
Deb Frankel
Estimated Activity Length:
10 hours
Source:
CK-12
Published:
2021
Last Updated:
2021
Intended Grade Level:
PreK-2,
3-5,
MS,
HS
Description:

cK-12 is a nonprofit free database of curricular resources across all subjects, and includes complete content, interacties and simulations, assessments and videos and more. The energy content includes content that addresses the foundational content required in NGSS. 

Location:

Pages