Constructing Solar Panels

Solar Panel Construction, Orientation and Use Unit

Grades:
9-12
Description:

For this extended task, students will track the sun's altitude and Azimuth to determine the best position for their hand-built solar panel, learn solar cell operation basics, solar panel construction, series and parallel circuitry and basic array sizing...

+
-
More Details Less Details
Source:
US Department of Energy
Published:
2021
Last Updated:
2021
Intended Grade Level:
HS,
Post Secondary
Description:

Published by US Department of Energy the Alternative Fuels Data Center is a wealth of data, maps, reports, interactives, case studies, and other resources on existing and emerging alternative fuel technologies, including electric vehicles, biodiesel, natural gas, hydrogen fuel cell, and others. Designed for fleet managers but applicable to high school classrooms, this can be a key research resource for understanding both the science and policy of alternative fuel transportation and applying to real world situations.

Location:
Source:
CK-12
Published:
2021
Last Updated:
2021
Intended Grade Level:
PreK-2,
3-5,
MS,
HS
Description:

cK-12 is a nonprofit free database of curricular resources across all subjects, and includes complete content, interacties and simulations, assessments and videos and more. The energy content includes content that addresses the foundational content required in NGSS. 

Location:
Hot Pack

Unit Plan - Chemical Differences in Emergency Energy Sources

Grades:
7-8
Description:

Students develop atomic and molecular models of energy resources, analyze combustion of various fuels and build circuits with Photovolatic (PV) modules to evaluate and suggest revisions to a disaster preparedness supply list. They then research and...

+
-
More Details Less Details
Learning Goal(s):
To build empathy for people in emergency situations and an understanding of how access to energy resources can increase one’s safety, health, and comfort. To understand the nature of a variety of energy needs and how different applications have different optimal solutions. To develop models to explain the molecular and extended structures of energy resources, including how the resources change when energy is generated (Electron movement in PV cells, combustion reactions in fuel). To understand that the properties of substances depends upon the atomic / molecular structure, which changes with chemical reactions. To build a circuit that includes a solar module and measure the voltage and current. To gather and evaluate information to describe the impact on society of converting natural resources into PV cells. To design, build and test a device that uses a chemical reaction to generate or absorb thermal energy. Evaluate and revise a plan for the energy resources one should store to prepare for a natural disaster. 
Author:
Melody Childers
Estimated Activity Length:
0 sec
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Lesson Number:
1
Description:

As students begin to look at the role photovoltaics might play within the transportation energy sector, it is important for them to understand why the phasing-out of fossil fuels is such a daunting task. This lesson is designed to help students comprehend...

+
-
More Details Less Details
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Basic Stamp Microprocessor

Measuring Voltage Using a Microcontroller

Grades:
9-12
Lesson Number:
1
Description:

In this lesson students will be introduced to series circuits, resistors, a photoresistor and a microcontroller. There’s a lot here, but it boils down to making a voltage divider circuit and measuring the voltage at different points. A second circuit...

+
-
More Details Less Details
Learning Goal(s):
Students will apply Ohm’s Law. Students will use a multimeter to measure current, voltage, and resistance. Students will use a breadboard to set up a series circuit. Students will read circuit diagrams. Students will calculate times for an RC circuit to change state. Students will prove that resistors in series have an equivalent resistance equal to their individual sums. Students will program the Basic Stamp to measure voltage levels in a voltage divider and RC circuit.
Author:
Pat Blount
Estimated Activity Length:
2 hours
Simple Solar Water Heater

Making the Standard Solar Heater

Grades:
6-8
Lesson Number:
1
Description:

In part one of the activity students will be asked to create a simple solar heater, measure the temperature change in a vial of water, then calculate the heat energy transferred to a vial of water. Students will construct the solar heater, place a set...

+
-
More Details Less Details
Learning Goal(s):
In this activity students will learn that sunlight energy can be transformed into other forms of energy and that the amount of sunlight energy captured by an object can be quantified and measured.
Author:
Nathan Franck
Estimated Activity Length:
1 hour
Solar Mobile

Exploring Circuits and Optimum Power

Grades:
6-8
Lesson Number:
2
Description:

This lesson is an exploratory learning cycle that will give the instructor input as to where students are in their understanding of circuits and also scaffolds student learning. This lesson starts by engaging students by using an Energy Stick. Then,...

+
-
More Details Less Details
Learning Goal(s):
Students build series circuits using “grain of wheat bulb” and LEDs powered by various low voltage solar panels. Students build parallel circuits using grain of wheat and LED bulbs powered by various low voltage solar panels. Students demonstrate and draw the energy transfer using solar energy. Students draw a circuit diagram of their final optimal circuit. Students design an optimal circuit model that will be used in their final project. 
Author:
Kristy Schneider
Estimated Activity Length:
3 hours

Pages