Source:
Hukseflux Thermal Sensors
Published:
2020
Last Updated:
2020
Intended Grade Level:
MS,
HS,
Post Secondary
Description:

A free iPhone app that allows you to take data on irradiance (in Watts/area), to be able to compare electrical output from solar photovoltaic panels to the irradiance they receive. 

Location:
Energy Content:
Solar Mini House

Mini Solar Houses Unit

Grades:
4-6
Description:

In Lesson 1, the lesson focuses on understanding how the angle and orientation affect the amount of energy that is generated through use of a solar cell. Paper azimuth finders, Keva Planks, and multimeters will be used in order for students to draw...

+
-
More Details Less Details
Learning Goal(s):
1. Students will understand how to use an Azimuth finder to determine the direction and altitude that solar modules will face. 2. Students will learn how to describe why a solar module is pitched at a particular angle. 3. Students will understand how to measure the voltage and current for an electrical energy source. 4. Students will learn how to build a circuit that will light a light bulb with a switch and without a switch. 5. Students will understand that the electricity flows through a circuit from an energy source to a load. 6. Students will understand the difference between open and closed circuits. 7. Students will understand the similarities and differences between solar cells and batteries as an energy source. 8. Students will understand how electricity flows through a circuit (from energy sources to loads) with more than one source and more than one load. 9. Students will understand how to build series and parallel circuit and the characteristics of each. 10. Students will learn to power both a light and a fan. 11. Students will learn how to find a fault in a circuit. 12. Students will understand that the electricity flows through a circuit from an energy source to a load. 13. Students will understand the difference between open and closed circuits. 14. Students will identify the causes and solutions to various complications that arise in the construction of circuits. 15. Students will use the design process to create a roof to hold an adequate number of solar modules to power an LED and a fan. 16. Students will understand how to make a geometric net (a 2D drawing that when folded creates a 3D shape) for designing a roof.
Author:
Beverly Satterwhite
Estimated Activity Length:
8 hours
Source:
KidWind
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS,
OST
Description:

Two really fantastic and engaging engineering challenges held both nationally and online for grades 4-12: Wind Engineering and Solar Structures. Educators and students are provided with scaffolded lessons for engaging in the fundmanetal content of the challenge, as well as guidance for how to prepare and structure the challenge. Challenges can be run at the class, school, district, or regional level and the in-person challenge includes regional and national competitions. Kidwind also provide professional development opportunities for educators.

Location:
Constructing Solar Panels

Solar Panel Construction, Orientation and Use Unit

Grades:
9-12
Description:

For this extended task, students will track the sun's altitude and Azimuth to determine the best position for their hand-built solar panel, learn solar cell operation basics, solar panel construction, series and parallel circuitry and basic array sizing...

+
-
More Details Less Details
Source:
University of Illinois-Cyber Resilient Energy Delivery Consortium
Published:
2019
Last Updated:
2020
Intended Grade Level:
3-5,
MS
Description:

CREDC is a wealth of interactives and curricula for K-12 educators. There are six interactives for engaging in how to manage various sources of energy and their costs in relationship to energy usage, as well as curricula such as paper circuits, and resources and ideas for integrating coding, Minecraft, and other computer applications in energy and circuitry explanations.

Location:
NGSS Disciplinary Core Idea:
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours
Source:
University of Colorado Boulder
Published:
2020
Last Updated:
2020
Intended Grade Level:
3-5,
MS,
HS
Description:

A series of over 150 digitial interacitves that allow students to explore a wide variety of science concepts, from simple energy transformations and motion, as well as beahvior of electricity in multiple contexts (static electricity, circuity, batteries, electromagnetism, fields, and more). Many include data collection and applied exploraion of science concepts in physics, chemistry, math, and more. Most are meant for secondary grades, but there are some good foundational energy interactives for upper elementary.

Location:
Outdoor Circuitry

Engineering with Renewable Energy: Solar Water Pumping

Grades:
4-5
Description:

Students will learn that energy from a renewable resource can be converted to electrical energy to do work by engineering a water pump system powered by the sun. They will compare the volume of water pumped by different designs and graph data collected and...

+
-
More Details Less Details
Learning Goal(s):
The students will be able to learn what a solar cell looks like and how light energy triggers the cell to release negative charges to move toward the positive side, creating power as it moves from one side to the other. Students will be able to arrange four panels into the correct order to create power for an object and interact with a 3D model of a module to understand how the electricity to power the fan is created. The students will be able to experiment with solar panels (angle, direction) to power a small fan/LED light/circuit board. Students will be able to identify the best position/angle for maximum power. Students will apply scientific ideas to design and test a solar powered water pump that moves water at the fastest rate. Students will experiment and build understanding of parallel and series wiring and how energy moves in these circuits.
Author:
Jamie Repasky
Estimated Activity Length:
2 hours