To see descriptions of all available curriculum by grade, click here. To download a PDF of all available units, click here.

Solar Mobile

Solar Mobile Design Challenge Unit Plan

Grades:
6-8
Description:
This unit involves students learning about transferring solar energy to small motors, exploring the center of gravity and testing light sources (including the sun). The culminating engineering design project gives students the chance to pull together their...
+
-
More Details Less Details
Learning Goal(s):
Students will design circuits using various solar panels in order to power motors with propellers. Students will learn about solar energy transfer in order to power the motors on their solar aircraft.Students will research an aircraft and draw an outline of the aircraft onto foam board. Students will explore the concept of center of gravity. Students will test the efficiency of various light sources (incandescent, fluorescent, LED, halogen) for usage by a PV cell.Students will use their prior testing results and knowledge to engineer a solar-powered mobile. Students will work to transfer the most energy from the solar panels considering all the tested variables in order to power the fastest, most efficient mobile.Students will demonstrate and explain why their solar mobile should be chosen for the solar mobile display in the children’s museum. 
Author:
Kristy Schneider
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
0 sec
Solar Mobile

Introducing the Solar Mobile Design Challenge

Grades:
6-8
Lesson Number:
1
Description:
This lesson is aimed to engage students and build excitement for their future engineering design challenge of building the fastest Solar Powered Mobile. Through multi-media resources, Students will encounter real life solar aircrafts and a room-sized Solar...
+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to solar aircraft. Students will form and write questions about solar aircraft into their Engineering Notebooks setting the stage for future questions.Students will be introduced to a room-sized solar mobile and add additional questions to their engineering notebook.Students will be introduced to the engineering design scenario. 
NGSS Science and Engineering Practices:
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Mobile

Exploring Circuits and Optimum Power

Grades:
6-8
Lesson Number:
2
Description:
This lesson is an exploratory learning cycle that will give the instructor input as to where students are in their understanding of circuits and also scaffolds student learning. This lesson starts by engaging students by using an Energy Stick. Then, students...
+
-
More Details Less Details
Learning Goal(s):
Students build series circuits using “grain of wheat bulb” and LEDs powered by various low voltage solar panels. Students build parallel circuits using grain of wheat and LED bulbs powered by various low voltage solar panels. Students demonstrate and draw the energy transfer using solar energy. Students draw a circuit diagram of their final optimal circuit. Students design an optimal circuit model that will be used in their final project. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
3 hours
Solar Mobile

Exploring Center of Gravity

Grades:
6-8
Lesson Number:
3
Description:
Since the concept Center of Gravity (mass) is a key factor in a mobile, students will participate in some activities to help them experience and understand this principle so it can be applied to their final Solar Mobile design. This lesson starts with a...
Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will observe a discrepant event and write down questions about what they observed. Students will participate in a variety of activities using a meter stick in order to experience and learn about center of gravity.Students will find the center of gravity of an irregular shaped paper object by using a plumb line. Students will apply the concept of Center of Gravity and find the center of their solar aircraft that is to be used on their solar mobile. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
2 hours
Solar Mobile

Light Source Efficiency: Exploring Irradiance

Grades:
6-8
Lesson Number:
4
Description:
This lesson explores the concept of irradiance by having students use a Vernier Pryanometer. Using the “Light Source Efficiency” worksheet to guide their work, students measure irradiance as compared to the Sun’s irradiance to see what would be the best li...
+
-
More Details Less Details
Learning Goal(s):
Using a Vernier Pyranometer, students will measure electromagnetic radiation in watts per square meter (W/m2 ). Students will compare Sunlight irradiance with various indoor lighting options. Students will make a recommendation as to the optimum indoor lighting for powering solar panels. 
Author:
Kristy Schneider
Estimated Activity Length:
2 hours
Solar Mobile

Solar Mobile Design Challenge - Construction

Grades:
6-8
Lesson Number:
5
Description:
This is the culminating hands-on project for the Solar Mobile Design Challenge Lessons, with construction aligned to an engineering design process. Students start by Restating the Design Problem that was introduced to them in the beginning of the Unit. Next,...
+
-
More Details Less Details
Learning Goal(s):
Students brainstorm ideas and share with their group.Students draw and label Solar Mobile designs in Engineering Notebooks. Students research an aircraft to trace (if this was not accomplished in the Center of Gravity lesson) and trace the aircraft outline onto foam board. Students construct a solar circuit to power motors and propellers on a foam board aircraft and test multiple times before adding to the solar mobile stand. Students construct solar mobile stand and add their aircraft to a dowel attached to the central hub. Students work with a partner to balance each aircraft onto the mobile. Students test the mobile speed outside (depending on weather) and compare to speed under indoor light stands. After initial testing, students redesign circuits or mobile construction to optimize design. Students use hand-held devices to film their moving Mobiles to judge the machine’s speed. Students demonstrate how their Solar Mobile works and justify in writing why their mobile should be chosen for the Children’s Technology Museum. 
Author:
Kristy Schneider
Other Subjects Covered:
Estimated Activity Length:
6 hours