To see descriptions of all available curriculum by grade level, click here. To download a PDF of all available units, click here.

Basic Stamp Microprocessor

Controlling a Servo

Grades:
9-12
Lesson Number:
2
Description:

In this lesson students will learn how to control a servo using the Basic Stamp. Then students will combine the photoresistor from the previous lesson with the servo to create a light controlled servo.

+
-
More Details Less Details
Learning Goal(s):
Students will be able to apply the pulse width modulation to a servo from a Basic Stamp. Students will synthesize two circuit designs using one to control the other through the Basic Stamp.
Author:
Pat Blount
Estimated Activity Length:
1 hour
Basic Stamp Microprocessor

Creating a Light-Tracking Servo

Grades:
9-12
Lesson Number:
3
Description:

Students will learn how to program the Basic Stamp to use information from two photoresistors to point a servo at a light source. This will be the first degree of freedom for the flower head.

+
-
More Details Less Details
Learning Goal(s):
Students will synthesize the previous lesson for light metering and servo control to design a servo controlled by two photoresistors that will track a light source.
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour
Basic Stamp Microprocessor

Dual Axis Light Tracking

Grades:
9-12
Lesson Number:
4
Description:

Students will take the previous lesson and apply them in creating a light tracker with two degrees of freedom. The axis of rotation will be about the horizontal and vertical. Teams will have everything they need to make this build work. They have already...

+
-
More Details Less Details
Learning Goal(s):
Students will create a solar tracker with two degrees of freedom.
NGSS Science and Engineering Practices:
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour
Basic Stamp Microprocessor

Integrating Solar Power

Grades:
9-12
Lesson Number:
5
Description:

At this point students should have a working robotic sunflower that will track the sun with 2 degrees of freedom. This next lesson powers the whole system with a photovoltaic module. A Zener diode is used to charge a 6V motorcycle battery which then...

+
-
More Details Less Details
Learning Goal(s):
Students will create voltage regulator and construct a solar battery charger.
NGSS Science and Engineering Practices:
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Rooftop

Solar Site Assessment

Grades:
9-12
Lesson Number:
4
Description:

Students will do an actual site assessment to determine the available solar resource for a chosen location.

+
-
More Details Less Details
Learning Goal(s):
Students will be able to use a Solar Pathfinder to determine the amount of solar resource lost to shading from nearby trees, buildings, etc. Students will be able to calculate the number of kWh of electricity that can be produced in a specific location and in a specific sized area. Students will be able to calculate the amount of carbon emissions that can be offset due to installing photovoltaic panels of various sizes. Students will be able to calculate the size array needed to offset all electricity use for the high school.
Author:
Clayton Hudiburg
Estimated Activity Length:
1 hour
Solar Charger Diagram

Replacing Fossil Fuels?

Grades:
10-12
Lesson Number:
1
Description:

As students begin to look at the role photovoltaics might play within the transportation energy sector, it is important for them to understand why the phasing-out of fossil fuels is such a daunting task. This lesson is designed to help students comprehend...

+
-
More Details Less Details
Learning Goal(s):
1. Students will define energy density. 2. Students will compare energy densities among various transportation fuel options. 3. Students will compare costs per unit of energy among various transportation fuel options. 4. Students will compare energy return on energy invested among various transportation fuel options. 5. Students will assess which fuels have the most potential to replace fossil fuels in the transportation sector using a weighted matrix.
Author:
Clayton Hudiburg
Relevant NGSS PE:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Background Research on Alternative Transportation Vehicles

Grades:
10-12
Lesson Number:
2
Description:

Students completing this lesson will already have identified some of the problems inherent in the development of ideas to replace fossil fuels in the transportation sector. Students will now conduct some research to identify some of the pros and cons of...

+
-
More Details Less Details
Learning Goal(s):
1. Students will define BEVs, HEVs, HFCVs, and HICEVs 2. Students will compare the above vehicles and relate the pros and cons of each technology 3. Students will begin to evaluate which type of technology might be best suited for the goal of replacing fossil fuels in the transportation sector 4. Students will begin to brainstorm ideas for how solar energy might be used to enhance these technologies
Author:
Clayton Hudiburg
Other Subjects Covered:
Estimated Activity Length:
1 hour
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Lesson Number:
3
Description:

In this lesson, students will begin to explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will test a variety of wiring options related to series and parallel wiring....

+
-
More Details Less Details
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
Author:
Clayton Hudiburg
Estimated Activity Length:
2 hours
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:

In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours
Solar Charger Diagram

Photovoltaic Solutions "Shark-Tank Style"

Grades:
10-12
Lesson Number:
5
Description:

In this lesson, the students will take their knowledge gained in the previous activities to innovate design solutions that will allow PV technology to plan an increased role in the transportation sector. The challenge given to them is to design a BEV that...

+
-
More Details Less Details
Learning Goal(s):
1. Students will use data and mathematics to design a solution for using PV technology in the transportation sector. 2. Students will create a presentation with visuals and specs outlining their proposed solution. 3. Students will present and attempt to “sell” their products to a panel of judges.
Author:
Clayton Hudiburg
Estimated Activity Length:
5 hours