Cost Effective Solar Cells Unit Plan

Grades:
9-12
Description:

Through a series of solar panel and solar cell construction activities, students will learn the basic principles of energy conversion from light energy to chemical & electrical energy. Students will assemble and test pre-constructed solar panels to...

+
-
More Details Less Details
Learning Goal(s):
Students will discuss social, cultural, and economic implications of sustainable solar energy.Students will construct and test solar panel arrays to power LED lights, fan motors, and music playersStudents will review circuitry basics and solar cell layersStudents will analyze and share out power generation results with classmatesStudents will construct and test an oxidized copper sheet solar cellStudents will share and analyze oxidized copper sheet solar cell dataStudents will construct and test titanium dioxide coated “raspberry juice” solar cellsStudents will collect and analyze titanium dioxide coated “raspberry juice” solar cell data.Students will discuss results and draw conclusions about variables that may affect power generationStudents will visit a solar cell or silicon manufacturing facility and/or engage with guest speakers. Students will learn more detailed solar cell principles and manufacturing techniques involved in solar cell constructionStudents will research chemicals, materials and procedures for their own solar cell designsStudents will build and present models of their proposed solar cellsStudents will construct and test unique solar cellsStudents will present construction progress and project obstaclesStudents will format solar cell data, draw conclusions, and construct an engineering report as a research poster
Author:
Tom Wolverton
Estimated Activity Length:
10 hours
Design a 50 Year Energy Plan

50 Year Energy Plan - Unit Plan

Grades:
9-12
Description:

Throughout this creative, hands-on Unit, students are challenged to scale up every Disciplinary Core Idea and Science & Engineering Practice they’ve learned - from simple electricity generation, to building their own stereo speakers and DIY electric...

+
-
More Details Less Details
Learning Goal(s):
Explore causes and effects of climate change as related to energy production. Develop a working understanding of varying stakeholder perspectives on the causes and effects of climate change. Through hands-on exploration, build a working speaker that can connect to a cellphone. Use DIY speakers as a model to observe the process of producing electrical currents with a simple generator. Design, build and refine a wind turbine to efficiently convert mechanical energy into electrical energy. Design, build and refine a system that is the most effective at converting the sunlight into electrical energy. Students develop models to study the relationship between the Earth’s atmospheric composition and the Earth’s surface temperatures using simple diagrams. Students reflect on the impact of energy sources and power production on the environment. Students utilize their knowledge of how energy generation processes impacts the environment to inform how and why they develop a 50-year Energy Plan for their local community. 
Author:
Bradford Hill
Estimated Activity Length:
0 sec
Solar Updraft Tower

Solar Updraft Towers Unit Overview

Grades:
3-8
Description:

Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower. During this process, students will make references to specific phenomena...

+
-
More Details Less Details
Learning Goal(s):
Students will understand ten renewable and non-renewable energy sources on the earth.Students will learn the locations of different energy sources on the earth.Students will learn the history of energy sources and how humans have used them.Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.Students will understand that hot air risesStudents will understand why hot water and hot air rise and cold air and cold water sink.Students will learn that wind is produced by warm air rising and cold air sinking.Students will learn that the energy of moving hot air can be converted into other forms of energy.Students will understand that energy from the sun can be converted into heat.Students will discuss the effects of the chimney stack phenomenon.Students will understand that wind energy can be converted into other forms of energy.Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       Students will identify characteristics of turbine design that improve the success of their device.Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.Students will be able to define and explain what a solar updraft tower is.Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.
Author:
Lisa Morgan
Estimated Activity Length:
10 hours
Sun in Space

Our Place in Space: Cosmic Rays

Grades:
3-5
Lesson Number:
1
Description:

NOTE: SUN PHOTOMETER SUMULATOR AT CAS.HAMPTONU.EDU SEEMS TO BE NO LONGER AVAILABLE.

Using a map of school buildings, students will pick four areas to monitor over the year using wireless weather stations and the Solar Power Meter. In a following...

+
-
More Details Less Details
Learning Goal(s):
Students will learn how the sun affects their school by measuring the temperature at different locations around the building in the fall, winter, and spring. They will learn how to measure solar energy and look for trends in temperature and solar power over the year. These trends will then be used to investigate how energy reaches Earth from the Sun.
Author:
Jamie Repasky
Estimated Activity Length:
3 hours
Energy Transformations

What is Energy?

Grades:
4-6
Unit:
Lesson Number:
1
Description:

Students will gain an understanding of the fundamentals of energy through observing a variety of energy transformations and develop a foundational vocabulary for identifying and discussing energy concepts. Students will make observations about how energy...

+
-
More Details Less Details
Learning Goal(s):
Students will obtain the foundational knowledge of energy sources and forms of energy. In addition, students will learn that energy can transfer from one form to another. Students will build the understanding that there are different types of energy and many can not be directly observed.
NGSS Science and Engineering Practices:
Author:
Carol Patrick
Relevant NGSS PE:
Estimated Activity Length:
1 hour
UV Color Changing Beads

Hypothesizing Why Solar Beads Change Color

Grades:
3-5
Lesson Number:
1
Description:

The purpose of this activity is to introduce the idea that sunlight is energy and that this energy can be absorbed, converted into heat, or even cause a chemical reaction to occur. This lesson is also an introduction to the process of science, involving...

Energy Content:
+
-
More Details Less Details
Learning Goal(s):
Students will be introduced to the vocabulary of observation, hypothesis, and evidence. Students will use the process of science discourse where people respectfully listen and disagree with each other’s ideas.
Author:
Leah Gorman
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
30 min
Solar Circuit

How the Amount of Light Affects a Solar Cell

Grades:
6-8
Unit:
Lesson Number:
1
Description:

Students will cover portions of a solar cell and measure the output with a multimeter. They will compare and contrast the outputs of different percentages shaded and different configurations using the same percentage shaded.

+
-
More Details Less Details
Solar Rooftop

Introduction to the Photovoltaic Effect

Grades:
9-12
Lesson Number:
1
Description:

This lesson begins with basic chemistry with regards to atomic structure. The lesson then moves to understanding the special properties of silicon as a photoelectric semi- conductor. Building on this, the basic structure of photovoltaic solar cells is...

+
-
More Details Less Details
Learning Goal(s):
Students will be able to describe the basic structure of a photovoltaic solar cell. Students will be able to outline or summarize how solar cells produce electricity. Students will be able to explain why silicon, boron and phosphorous are most often used to construct solar cells.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Clayton Hudiburg
Other Subjects Covered:
Estimated Activity Length:
1 hour

Keeping it Cool With Solar: Hot Spot/Cool Spot

Grades:
K-2
Lesson Number:
1
Description:

This is the first lesson where K- 2 students will investigate the effect of sunlight on the earth’s surface (K - PS3-1). The students will observe a video of an ice cube melting as the anchoring phenomenon for the unit. In this first lesson, students will...

+
-
More Details Less Details
Learning Goal(s):
Students will consider and pose questions about what type of energy source can cause an ice cube to melt. Students will explore how the sun affects the Earth’s surface on the playground. Students will analyze data to understand how the sun affects the earth’s surface on the playground. Students will link the idea of sun/shade to hot/cool.
Author:
Mark Lewin
Relevant NGSS PE:
Estimated Activity Length:
30 min
Earth Sun

Individual Independent Projects

Grades:
3-5
Lesson Number:
12
Description:

The purpose of this lesson is to allow students to choose an area of interest regarding solar power and research it further in a manner of their choice. Students will produce a final product to display or share at the “Salute to the Sun” culminating event...

+
-
More Details Less Details
Learning Goal(s):
Students will plan, gather research materials and create a project of their choice. In doing so student will learn proper research methods (i.e., reliable sources) and how to categorize and translate information. In addition students will become comfortable and familiar presenting information to others. Lastly, students will also learn how to create a rubric for self evaluation.
Author:
Lisa Morgan
Relevant NGSS PE:
Estimated Activity Length:
10 hours