Wort Chiller

Bioreactor Water Circulation System

Grades:
7-12
Lesson Number:
3
Description:

Solar energy is available when the sun shines but energy can be supplemented at night by the decomposition energy in a bioreactor. In this activity we will experiment with the feasibility of using heated water in a bioreactor to circulate it through a...

+
-
More Details Less Details
Learning Goal(s):
1. Students will examine the properties of solar water pumping systems using KidWind solar water pumps or similar water pumps. 2. Students will experiment with the properties of water and its limitations in circulating due to pump power and distance. 3. Students will evaluate the use of a heat sink/chiller in the circulation of water through the bioreactor.
Author:
Tami Church
Estimated Activity Length:
4 hours
Basic Stamp Microprocessor

Creating a Light-Tracking Servo

Grades:
9-12
Lesson Number:
3
Description:

Students will learn how to program the Basic Stamp to use information from two photoresistors to point a servo at a light source. This will be the first degree of freedom for the flower head.

+
-
More Details Less Details
Learning Goal(s):
Students will synthesize the previous lesson for light metering and servo control to design a servo controlled by two photoresistors that will track a light source.
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour

Cost Effective Solar Cells: Solar Panel Basics

Grades:
9-12
Lesson Number:
3
Description:

This lesson is designed to be completed in one 40-minute section. Students will have already learned the concepts of basic circuits, including voltage, current, power, parallel and serial circuits. Teachers will then explain the basic concept of solar...

+
-
More Details Less Details
Learning Goal(s):
Students will review circuitry basics and solar cell layersStudents will model N-layers, P-layers, and the N-P junction in a physical circuit activity
Author:
Tom Wolverton
Other Subjects Covered:
Estimated Activity Length:
1 hour
Design a 50 Year Energy Plan

Scaling up to Power Production Let’s use Data to Optimize the Performance of a Solar Cell Array

Grades:
9-12
Lesson Number:
4
Description:

Somewhat similar to the first part of the wind turbine project from Lesson 3, students are tasked with optimizing the performance of a photovoltaic system. This objective both allows students to apply the engineering-design process they absorbed in...

+
-
More Details Less Details
Basic Stamp Microprocessor

Dual Axis Light Tracking

Grades:
9-12
Lesson Number:
4
Description:

Students will take the previous lesson and apply them in creating a light tracker with two degrees of freedom. The axis of rotation will be about the horizontal and vertical. Teams will have everything they need to make this build work. They have already...

+
-
More Details Less Details
Learning Goal(s):
Students will create a solar tracker with two degrees of freedom.
NGSS Science and Engineering Practices:
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour

Cost Effective Solar Cells: Solar Panel Data Sharing

Grades:
9-12
Lesson Number:
4
Description:

This lesson is designed to be completed in one 40-minute section. The teacher will facilitate the sharing of student solar panel data from indoor and outdoor testing with fans, music circuits, LEDs and any other combinations that were constructed. Teachers...

+
-
More Details Less Details
Learning Goal(s):
Students will analyze and share out power generation results with classmates
Author:
Tom Wolverton
Estimated Activity Length:
0 sec
Basic Stamp Microprocessor

Integrating Solar Power

Grades:
9-12
Lesson Number:
5
Description:

At this point students should have a working robotic sunflower that will track the sun with 2 degrees of freedom. This next lesson powers the whole system with a photovoltaic module. A Zener diode is used to charge a 6V motorcycle battery which then...

+
-
More Details Less Details
Learning Goal(s):
Students will create voltage regulator and construct a solar battery charger.
NGSS Science and Engineering Practices:
Author:
Pat Blount
Other Subjects Covered:
Estimated Activity Length:
1 hour

Part 2 - Lesson 2: Wind Energy

Grades:
6-12
Lesson Number:
5
Description:

Students will learn about wind and how wind varies across geographies. Students will use Vernier Wind Turbine kits or homemade wind turbines to experiment with blade angles and wind speed. During experimentation, students will collect data as blade angles...

+
-
More Details Less Details
Learning Goal(s):
1.Students will conduct an experiment where blade angles are the variable and wind speed is constant.2.Students will conduct an experiment where blade angles are constant and wind speed varies.3.Students will collect and analyze data to provide a conclusion to the questions: What is the optimal blade angle for generating the most energy? What is the optimal wind speed for generating the most energy?4.Students will research prevailing winds and use a provided map of their region to indicate wind speed and direction.5.Students will propose locations for wind farms based on optimal energy generation and zoning restrictions.6.Based on their proposals, students will determine a range of potential kilowatt generation from wind power.
Author:
Jonathan Strunin
Estimated Activity Length:
10 hours

Cost Effective Solar Cells: Copper Oxide Solar Cell Construction and Testing

Grades:
9-12
Lesson Number:
5
Description:

This lesson is designed to be completed in one 80-minute section, but can be done in two 40-minute sections. The teacher will facilitate student construction of copper oxide plates with electric burners or hot plates. Teachers will guide students in...

+
-
More Details Less Details
Learning Goal(s):
Students will construct an oxidized copper sheet solar cell Students will test an oxidized copper sheet solar cell for voltage and current
Author:
Tom Wolverton
Estimated Activity Length:
2 hours

Cost Effective Solar Cells: Copper Oxide Cell Data Sharing

Grades:
9-12
Lesson Number:
6
Description:

This lesson is designed to be completed in one 40-minute section. The teacher will facilitate the sharing of student solar cell data from indoor and outdoor testing through a gallery walk session. Variables such as lighting, photovoltaic effect, copper...

+
-
More Details Less Details
Learning Goal(s):
Students will share and analyze oxidized copper sheet solar cell data
Author:
Tom Wolverton
Other Subjects Covered:
Estimated Activity Length:
1 hour